0
Good afternoon,
Contextualizing, This is a study of control charts from the Tennessee Eastman Process dataset. The IDV below is corresponding to n° of the fault I wish to plot. Without the iteration loop the code, from internal scope to for, works. I’d like to use the iteration loop so I don’t have to repeat the code as many times as the number of crashes
IDV = [0,2,3,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20]
for FALHA in IDV:
df_test = test_faulty_complete[(test_faulty_complete.faultNumber==FALHA) &
(test_faulty_complete.simulationRun==1)].iloc[:,3:]
pca.predict(df_test)
pca.plot_control_charts(fault=160)
plt.suptitle(f'IDV({FALHA})');
pca.plot_contributions(fault=160, columns = df_test.columns)
print(f'Taxas de detecção de falhas - IDV({FALHA})\n--------------')
print(f'T2: {(pca.T2[160:]>pca.T2_lim).sum()/pca.T2[160:].shape[0]}')
print(f'Q: {(pca.Q[160:]>pca.Q_lim).sum()/pca.Q[160:].shape[0]}')
After the run the console returns:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-8d7a8951e678> in <module>
9 plt.suptitle(f'IDV({FALHA})');
10
---> 11 pca.plot_contributions(fault=160, columns = df_test.columns)
12
13 print(f'Taxas de detecção de falhas - IDV({FALHA})\n--------------')
<ipython-input-6-acaea6854ef2> in plot_contributions(self, fault, index, columns)
136 sns.heatmap(c, ax = ax,
137 yticklabels=int(self.c.shape[0]/10),
--> 138 cmap = plt.cm.Blues);
139
140 ax.set_title('Contribuições parciais para Q')
/opt/conda/lib/python3.7/site-packages/seaborn/matrix.py in heatmap(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, xticklabels, yticklabels, mask, ax, **kwargs)
510 plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,
511 annot_kws, cbar, cbar_kws, xticklabels,
--> 512 yticklabels, mask)
513
514 # Add the pcolormesh kwargs here
/opt/conda/lib/python3.7/site-packages/seaborn/matrix.py in __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask)
164 # Determine good default values for the colormapping
165 self._determine_cmap_params(plot_data, vmin, vmax,
--> 166 cmap, center, robust)
167
168 # Sort out the annotations
/opt/conda/lib/python3.7/site-packages/seaborn/matrix.py in _determine_cmap_params(self, plot_data, vmin, vmax, cmap, center, robust)
197 calc_data = plot_data.data[~np.isnan(plot_data.data)]
198 if vmin is None:
--> 199 vmin = np.percentile(calc_data, 2) if robust else calc_data.min()
200 if vmax is None:
201 vmax = np.percentile(calc_data, 98) if robust else calc_data.max()
/opt/conda/lib/python3.7/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims, initial, where)
32 def _amin(a, axis=None, out=None, keepdims=False,
33 initial=_NoValue, where=True):
---> 34 return umr_minimum(a, axis, None, out, keepdims, initial, where)
35
36 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
ValueError: zero-size array to reduction operation minimum which has no identity