4
Given a matrix whose elements are values of a given attribute in n positions in space. How to calculate the covariance matrix (nxn) of the values of this attribute at the given positions?
4
Given a matrix whose elements are values of a given attribute in n positions in space. How to calculate the covariance matrix (nxn) of the values of this attribute at the given positions?
4
The command cov
calculates the matrix of covariances between vectors:
m <- structure(c(0.768452329393413, 0.520393273867425, -2.09890502749191,
-0.654528466570541, 0.919830179164542, 1.27460444798111, 1.07961551777992,
-0.289916033636275, 1.15855442744553, 0.508462489658259, -0.0792310427562403,
0.521811455261112, -0.0959720400431859, -0.349637076748802, -0.623314127996813,
-1.19614534147188, 0.847785958379337, 0.0366301414309972, -0.235336873166317,
0.904062012003621, 0.0018213668519001, -0.523018014086154, 1.14818660098542,
-0.0690739661280247, 0.607636185846767, 0.187434031463705, -1.46043293060116,
1.06255833869145, -2.36387220876329, 0.310577658076884, 1.39471110313637,
1.22342525393594, -1.14380083312874, 0.440257827354724, -1.63456585330527,
-0.214500835853314, -0.411697427268116, 0.436671960637827, -0.5254714253143,
0.522741411533719, 0.0656469891893928, -0.344497090663013, 1.29287924459695,
-0.183348135008822, -1.8475095235835, -0.36208432586153, 1.88503500093279,
0.539769443231984, -0.291513706458498, -1.46009196414015, 1.09133008288539,
-0.0874258541488817, -2.45182826273455, -2.08616997315259, -0.728580575694078,
-0.375605093992269, 0.327776658112704, -0.837930695292596, -0.405610496341648,
0.512589750376218, -0.827557418583916, 1.32415306656766, 1.23817207202085,
0.313640070040018, 0.226985682916868, -0.578426494891533, -1.07656369792575,
2.19587300679404, 0.797528302882954, 0.820203882841757, 1.54349236714106,
-1.25021444211339, -0.179239252318575, 0.330079846792988, 0.397703631069944,
-0.973869052681041, -0.430052555124803, 0.404691334801542, 0.214385731192446,
0.286513167080837, 0.320391102476092, -0.556257733293155, 0.0934325159775297,
-1.38254135440984, -0.590534059589543, 0.713923335021795, -0.144268684428018,
-0.852335048928232, -0.199408549237512, 0.359851544015093, -1.21739555956348,
-0.195512250189903, -0.112744559736738, 0.625804498175987, -1.57775986198347,
1.20054913070658, -1.73886091923092, -0.369892489013922, 0.661666078266635,
-1.79441936980968, -1.0116282744842, -0.585882545581284, 2.15323933805744,
-1.5076232213321, 1.24363310435572, -0.248846191662788, 1.4015646439713,
-1.42085074256961, -2.23819649929885, 0.135378170378313, 0.0538991487109531,
-0.822828682914321, -1.36885371767029, 0.06777560839154, 0.985130708841452,
-0.502323948730095, -0.115917838687705, 0.226246852077969, 0.237178313260646,
-0.280566120702846, -0.950878757064271, -0.262738983028041, 0.758745108507647,
1.23846255554868, 2.0814272665118, 1.80610909459879, -2.03882073180482,
0.822316149311104, -0.70407229002402, 0.385178009929021, 0.00642742239202372,
1.7899070169825, -0.594813416273945, 0.836592128731576, -0.152105102543435,
-0.276066182919236, 1.02558836401032, 1.98810727160017, -2.52841323508544,
0.642710557325235, 1.70460856449495, 0.403639756604342, -1.58395780865054,
0.76233906676309, 0.213916020487889, -0.676869926369806, 1.0137575755379,
-0.814741083224426, -0.376563071825111, -0.045196529340526), .Dim = c(50L,
3L))
cov(m)
[,1] [,2] [,3]
[1,] 0.9339247 0.1967204 0.1614836
[2,] 0.1967204 0.9526770 -0.2246604
[3,] 0.1614836 -0.2246604 1.2965366
Notice how the resulting matrix is symmetric, as expected. If I wanted the correlation matrix, just rotate
cor(m)
[,1] [,2] [,3]
[1,] 1.0000000 0.2085550 0.1467507
[2,] 0.2085550 1.0000000 -0.2021442
[3,] 0.1467507 -0.2021442 1.0000000
Browser other questions tagged r matrix
You are not signed in. Login or sign up in order to post.
wouldn’t you have example of the code you’ve produced to solve this problem? So it’s easier for people to help you.
– Flávio Granato
Worse than not having Flávio, I have only the matrix. Basically I have the value of the attribute in 102 space positions. Then the resulting matrix will be 102x102, but triangular, because the covariance between the element at position 1 and the element at position 2 is equal to the covariance between the element at position 2 and the element at position 1.
– Let DC
But I don’t know how to do it, if you have a specific command in the R, or something like that.
– Let DC