Graph of Conditional Densities of a Linear Regression

Asked

Viewed 82 times

3

I have this data frame with two columns: Y and X.

data=structure(list(Y = c(NA, -1.793, -0.642, 1.189, -0.823, -1.715, 
    1.623, 0.964, 0.395, -3.736, -0.47, 2.366, 0.634, -0.701, -1.692, 
    0.155, 2.502, -2.292, 1.967, -2.326, -1.476, 1.464, 1.45, -0.797, 
    1.27, 2.515, -0.765, 0.261, 0.423, 1.698, -2.734, 0.743, -2.39, 
    0.365, 2.981, -1.185, -0.57, 2.638, -1.046, 1.931, 4.583, -1.276, 
    1.075, 2.893, -1.602, 1.801, 2.405, -5.236, 2.214, 1.295, 1.438, 
    -0.638, 0.716, 1.004, -1.328, -1.759, -1.315, 1.053, 1.958, -2.034, 
    2.936, -0.078, -0.676, -2.312, -0.404, -4.091, -2.456, 0.984, 
    -1.648, 0.517, 0.545, -3.406, -2.077, 4.263, -0.352, -1.107, 
    -2.478, -0.718, 2.622, 1.611, -4.913, -2.117, -1.34, -4.006, 
    -1.668, -1.934, 0.972, 3.572, -3.332, 1.094, -0.273, 1.078, -0.587, 
    -1.25, -4.231, -0.439, 1.776, -2.077, 1.892, -1.069, 4.682, 1.665, 
    1.793, -2.133, 1.651, -0.065, 2.277, 0.792, -3.469, 1.48, 0.958, 
    -4.68, -2.909, 1.169, -0.941, -1.863, 1.814, -2.082, -3.087, 
    0.505, -0.013, -0.12, -0.082, -1.944, 1.094, -1.418, -1.273, 
    0.741, -1.001, -1.945, 1.026, 3.24, 0.131, -0.061, 0.086, 0.35, 
    0.22, -0.704, 0.466, 8.255, 2.302, 9.819, 5.162, 6.51, -0.275, 
    1.141, -0.56, -3.324, -8.456, -2.105, -0.666, 1.707, 1.886, -3.018, 
    0.441, 1.612, 0.774, 5.122, 0.362, -0.903, 5.21, -2.927, -4.572, 
    1.882, -2.5, -1.449, 2.627, -0.532, -2.279, -1.534, 1.459, -3.975, 
    1.328, 2.491, -2.221, 0.811, 4.423, -3.55, 2.592, 1.196, -1.529, 
    -1.222, -0.019, -1.62, 5.356, -1.885, 0.105, -1.366, -1.652, 
    0.233, 0.523, -1.416, 2.495, 4.35, -0.033, -2.468, 2.623, -0.039, 
    0.043, -2.015, -4.58, 0.793, -1.938, -1.105, 0.776, -1.953, 0.521, 
    -1.276, 0.666, -1.919, 1.268, 1.646, 2.413, 1.323, 2.135, 0.435, 
    3.747, -2.855, 4.021, -3.459, 0.705, -3.018, 0.779, 1.452, 1.523, 
    -1.938, 2.564, 2.108, 3.832, 1.77, -3.087, -1.902, 0.644, 8.507
    ), X = c(0.056, 0.053, 0.033, 0.053, 0.062, 0.09, 0.11, 0.124, 
    0.129, 0.129, 0.133, 0.155, 0.143, 0.155, 0.166, 0.151, 0.144, 
    0.168, 0.171, 0.162, 0.168, 0.169, 0.117, 0.105, 0.075, 0.057, 
    0.031, 0.038, 0.034, -0.016, -0.001, -0.031, -0.001, -0.004, 
    -0.056, -0.016, 0.007, 0.015, -0.016, -0.016, -0.053, -0.059, 
    -0.054, -0.048, -0.051, -0.052, -0.072, -0.063, 0.02, 0.034, 
    0.043, 0.084, 0.092, 0.111, 0.131, 0.102, 0.167, 0.162, 0.167, 
    0.187, 0.165, 0.179, 0.177, 0.192, 0.191, 0.183, 0.179, 0.176, 
    0.19, 0.188, 0.215, 0.221, 0.203, 0.2, 0.191, 0.188, 0.19, 0.228, 
    0.195, 0.204, 0.221, 0.218, 0.224, 0.233, 0.23, 0.258, 0.268, 
    0.291, 0.275, 0.27, 0.276, 0.276, 0.248, 0.228, 0.223, 0.218, 
    0.169, 0.188, 0.159, 0.156, 0.15, 0.117, 0.088, 0.068, 0.057, 
    0.035, 0.021, 0.014, -0.005, -0.014, -0.029, -0.043, -0.046, 
    -0.068, -0.073, -0.042, -0.04, -0.027, -0.018, -0.021, 0.002, 
    0.002, 0.006, 0.015, 0.022, 0.039, 0.044, 0.055, 0.064, 0.096, 
    0.093, 0.089, 0.173, 0.203, 0.216, 0.208, 0.225, 0.245, 0.23, 
    0.218, -0.267, 0.193, -0.013, 0.087, 0.04, 0.012, -0.008, 0.004, 
    0.01, 0.002, 0.008, 0.006, 0.013, 0.018, 0.019, 0.018, 0.021, 
    0.024, 0.017, 0.015, -0.005, 0.002, 0.014, 0.021, 0.022, 0.022, 
    0.02, 0.025, 0.021, 0.027, 0.034, 0.041, 0.04, 0.038, 0.033, 
    0.034, 0.031, 0.029, 0.029, 0.029, 0.022, 0.021, 0.019, 0.021, 
    0.016, 0.007, 0.002, 0.011, 0.01, 0.01, 0.003, 0.009, 0.015, 
    0.018, 0.017, 0.021, 0.021, 0.021, 0.022, 0.023, 0.025, 0.022, 
    0.022, 0.019, 0.02, 0.023, 0.022, 0.024, 0.022, 0.025, 0.025, 
    0.022, 0.027, 0.024, 0.016, 0.024, 0.018, 0.024, 0.021, 0.021, 
    0.021, 0.021, 0.022, 0.016, 0.015, 0.017, -0.017, -0.009, -0.003, 
    -0.012, -0.009, -0.008, -0.024, -0.023)), .Names = c("Y", "X"
    ), row.names = c(NA, -234L), class = "data.frame")

With this, I run my basic linear regression: lm(data[,1]~data[,2])

Now, conditioned on the values of X = quantile(data[,2],c(0.10,0.5,.70)), I need to build the respective conditional densities.

However, I would like to plot these density charts in the scatter chart below:

plot(data[,2],data[,1])
abline(h=0,col="red")
abline(lm(data[,1]~data[,2]))

Will it be too complicated to do that? Any help?

  • 1

    You want density like in this chart? https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcRp0fraPBWgA45Ou7F14syjbrvLippSjGkq01eZrZliBl16b7MfA40vXBpBSQ

  • This should not be very simple, but I would like to see a solution here :)

  • @Danielfalbel EXACTLY! Further, I intend to general several different distributions (using kernel for example) and put in this graph to compare.

1 answer

3


Follow a code suggestion to make this chart:

# fazer a regressao com esta sintaxe evita 
# erros e warnings com a funcao predict
ajuste <- lm(Y ~ X, data=data) 

# medias de cada Y previsto

X <- quantile(data[,2], c(0.10,0.5,.70))
X <- data.frame(X=X)

previsao <- predict(ajuste, newdata=X)

# variancia dos Y previstos 
# (mesmo valor para todas, pois variancia constante
# eh uma das hipoteses da regressao linear)

var.erro <- anova(ajuste)$"Mean Sq"[2]

# grafico da regressao

plot(Y ~ X, data=data)
abline(h=0, col="red")
abline(ajuste)

# graficos das distribuicoes Y|X

# criar o dominio da funcao no intervalo
# (media-3*desvpad, media+3*desvpad)
# e calcular a densidade correspondente

densidadeRotada <- function(valor.predito, var.erro){
    dominio <- seq(valor.predito-3*sqrt(var.erro), 
        valor.predito+3*sqrt(var.erro), length.out=100)
    imagem  <- dnorm(dominio, mean=valor.predito, sd=sqrt(var.erro))
    return(data.frame(Dominio=dominio, Imagem=imagem))
}

# o truque eh plotar o grafico com dominio e imagem 
# trocados de posicao

curva.previsao <- densidadeRotada(previsao[1], var.erro)
lines(curva.previsao$Imagem, curva.previsao$Dominio)

# este primeiro resultado nao parece bom
# seria interessante brincar com a escala 
# do plot

lines(0.5*curva.previsao$Imagem, curva.previsao$Dominio, col="blue")

inserir a descrição da imagem aqui

I left the other curves in the 50th and 70th percentiles for the reader to practice and understand what is being done.

Note that the scale of the curve is completely arbitrary. In some cases it will be higher than the real, in some cases lower. Having built it between 3 standard deviations was also arbitrary. Perhaps building between 2 gives a better effect.

Finally, they are aesthetic decisions. Just work from this example and adapt to your needs.

  • 1

    Thank you very much, again Marcus. Helped too much! Thank you.

  • 1

    great! Very crazy!

Browser other questions tagged

You are not signed in. Login or sign up in order to post.