4
I have the following data:
structure(list(X26 = c(1.69, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA), X27 = c(0.94, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA), X28 = c(1.03, NA, NA, NA, NA, NA, 1.95, 4.83,
NA, NA, NA, 1.52, 3.44, NA, NA, NA, NA, NA, NA, NA, NA, 1.91,
NA, NA, NA, NA, NA, NA, NA), X29 = c(1.52, NA, NA, 1.37, NA,
NA, 2.1, 1.26, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 1.77, NA, NA, NA, NA, NA, NA, NA), X30 = c(0.91, 3.38, 1.33,
1.16, NA, NA, 1.86, 1.48, NA, NA, 1.26, 1.33, 1.44, NA, NA, NA,
NA, 2.1, 2.92, NA, 2.41, 1.23, NA, 1.26, 2.99, 1.33, NA, NA,
1.77), X31 = c(0.91, 2.05, 1.6, NA, NA, 2.57, NA, NA, NA, NA,
NA, 0.91, NA, NA, NA, 2.05, 2.1, 2.05, 1.37, NA, 2.41, 1.26,
NA, 1.52, NA, 1.03, NA, NA, 2.35), X32 = c(1.6, 3.65, 1.6, 0.86,
1.6, NA, 2.05, NA, NA, 2.25, 2.8, NA, NA, 2.74, NA, 1.64, 2.41,
2.8, NA, 1.16, 1.73, 1.12, NA, 1.95, 2.92, 1.6, NA, 1.64, NA),
X33 = c(2.74, NA, 2.41, NA, 2.52, 3.11, NA, 3.11, NA, 2.05,
2.92, NA, NA, 2.74, 1.6, 1.95, 2.63, NA, 1.33, NA, NA, 1.52,
1.77, NA, NA, NA, 2.35, 2.86, 2.35), X34 = c(NA, 4.25, 3.65,
1.6, 2.1, 5.18, 2.99, NA, 4.25, 2.05, 4.41, NA, NA, NA, NA,
3.18, NA, 4.02, 2.1, 2.35, 2.74, NA, 2.63, 4.33, 5.18, 2.2,
2.35, NA, NA), X35 = c(2.57, 4.83, 4.83, NA, 2.63, NA, NA,
4.1, 2.92, NA, 5.18, NA, NA, 3.38, 2.2, NA, 4.25, NA, NA,
1.91, NA, NA, NA, NA, 5.93, NA, 2.05, 2.41, NA), X36 = c(NA,
NA, NA, 2.35, NA, 6.54, 2.41, NA, NA, 4.25, NA, NA, NA, 4.1,
2.35, 3.18, NA, NA, 1.95, 2.74, 5.36, NA, 3.65, NA, NA, 2.99,
2.57, NA, 2.74), X37 = c(2.74, 6.13, NA, 3.38, NA, NA, NA,
NA, 3.44, NA, 8.24, NA, NA, 4.33, NA, 4.1, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), X38 = c(NA, NA, NA,
3.31, NA, NA, 2.99, NA, NA, NA, NA, NA, NA, NA, 5.18, NA,
NA, NA, NA, 3.94, NA, NA, NA, NA, NA, NA, 3.38, 2.74, 3.51
), X39 = c(NA, NA, NA, NA, NA, NA, NA, NA, 4.25, NA, NA,
NA, NA, 4.25, NA, NA, NA, NA, 3.31, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA), X40 = c(2.92, NA, NA, 5.09, NA, NA, NA,
NA, 7.88, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 4.1, NA)), .Names = c("X26", "X27",
"X28", "X29", "X30", "X31", "X32", "X33", "X34", "X35", "X36",
"X37", "X38", "X39", "X40"), class = "data.frame", row.names = c(NA,
-29L))
I tried every way to fit a Lowess curve, a local regression smoothing technique, into this distribution. I used the following code:
library(dplyr)
library(tidyr)
library(ggplot2)
dados <- dput(AIG)
dados %>%
mutate(id = row_number()) %>%
gather(semana, tamanho, -id) %>%
mutate(semana = factor(semana, levels = c("X26", "X27", "X28", "X29",
"X30", "X31", "X32", "X33", "X34", "X35", "X36", "X37", "X38", "X39", "X40")))%>%
ggplot(aes(x = semana, y = tamanho ,group = id)) + geom_point(na.rm = TRUE) + geom_smooth(method = "loess") + ggtitle('Gráfico do grupo AIG')
But I can only get the following chart:
I’m using the ggplot2 library, but it’s okay if you can help me fit this curve using another library.