-1
good afternoon. I have a problem in an Aceleradev activity in Data Science, I would like a help.
When I call the function . info(), it displays the values below:
countries.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 227 entries, 0 to 226
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Country 227 non-null object
1 Region 227 non-null object
2 Population 227 non-null int64
3 Area 227 non-null int64
4 Pop_density 227 non-null object
5 Coastline_ratio 227 non-null object
6 Net_migration 224 non-null object
7 Infant_mortality 224 non-null object
8 GDP 226 non-null float64
9 Literacy 209 non-null object
10 Phones_per_1000 223 non-null object
11 Arable 225 non-null object
12 Crops 225 non-null object
13 Other 225 non-null object
14 Climate 205 non-null object
15 Birthrate 224 non-null object
16 Deathrate 223 non-null object
17 Agriculture 212 non-null object
18 Industry 211 non-null object
19 Service 212 non-null object
dtypes: float64(1), int64(2), object(17)
memory usage: 35.6+ KB
Here I am trying to convert some columns to numeric and replace the decimal separators with these commands below:
countries['Pop_density'] = pd.to_numeric(countries['Pop_density'].str.replace(',','.'))
countries['Coastline_ratio'] = pd.to_numeric(countries['Coastline_ratio'].str.replace(',','.'))
countries['Net_migration'] = pd.to_numeric(countries['Net_migration'].str.replace(',','.'),errors='coerce')
countries['Infant_mortality'] = pd.to_numeric(countries['Infant_mortality'].str.replace(',','.'),errors='coerce')
countries['Literacy'] = pd.to_numeric(countries['Literacy'].str.replace(',','.'),errors='coerce')
countries['Phones_per_1000'] = pd.to_numeric(countries['Phones_per_1000'].str.replace(',','.'),errors='coerce')
countries['Arable'] = pd.to_numeric(countries['Arable'].str.replace(',','.'),errors='coerce')
countries['Crops'] = pd.to_numeric(countries['Crops'].str.replace(',','.'),errors='coerce')
countries['Other'] = pd.to_numeric(countries['Other'].str.replace(',','.'),errors='coerce')
countries['Climate'] = pd.to_numeric(countries['Climate'].str.replace(',','.'),errors='coerce')
countries['Birthrate'] = pd.to_numeric(countries['Birthrate'].str.replace(',','.'),errors='coerce')
countries['Deathrate'] = pd.to_numeric(countries['Deathrate'].str.replace(',','.'),errors='coerce')
countries['Agriculture'] = pd.to_numeric(countries['Agriculture'].str.replace(',','.'),errors='coerce')
countries['Industry'] = pd.to_numeric(countries['Industry'].str.replace(',','.'),errors='coerce')
countries['Service'] = pd.to_numeric(countries['Service'].str.replace(',','.'),errors='coerce')
I wonder if there is a more practical way to make this conversion.
Thank you.
Thanks friends, solved here!
– Alan Fros