3
Suppose the data set below:
df_1 <- structure(list(var_1 = c(42.0324095338583, 86.828490421176, 42.4499513395131,
87.8373390808702, 69.4962524808943), var_2 = c(52.6775231584907,
60.7429852150381, 23.1536079756916, 89.0404256992042, 40.8967914432287
), var_3 = c(53.2254045270383, 99.7671523876488, 55.2181884087622,
97.3904117196798, 63.9911676943302), var_4 = c(77.9183112829924,
53.8156733289361, 71.4701929315925, 70.3330857120454, 24.3069419451058
), var_5 = c(48.498358130455, 86.109549254179, 45.0998894125223,
61.7115858010948, 39.3580442667007), var_6 = c(43.4050587192178,
32.7955435216427, 46.6158176586032, 43.4641770273447, 49.2192720063031
), groups = structure(c(1L, 2L, 2L, 2L, 2L), .Label = c("1",
"2", "3"), class = "factor")), row.names = c(NA, 5L), class = "data.frame")
And the role to follow:
library(tidyverse)
library(magrittr)
df_1 %>%
filter(
across(.cols = is.numeric, .fns = ~ is_weakly_greater_than(e1 = ., e2 = 40))
)
# var_1 var_2 var_3 var_4 var_5 var_6 groups
#1 42.03241 52.67752 53.22540 77.91831 48.49836 43.40506 1
#2 87.83734 89.04043 97.39041 70.33309 61.71159 43.46418 2
It works normally. But, just take out the operator ~
:
df_1 %>%
filter(
across(.cols = is.numeric, .fns = is_weakly_greater_than(e1 = ., e2 = 40))
)
Error:
across()
must only be used Inside dplyr Verbs.
- Meaning the use of the operator
~
within codes oftidyverse
?