2
Hey, you guys, hey! I have a problem, I believe, in my training set. I have a numpy array with 649 images for training my network however when starting the training(model.fit) I see that only 21 images are "coming" for this training. Someone would know to tell me what might be going on?
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same", activation="relu", input_shape=[100, 100, 3]))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same", activation="relu"))
model.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='valid'))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding="same", activation="relu"))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding="same", activation="relu"))
model.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='valid'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=128, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(units=128, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.summary()
model.compile(loss="sparse_categorical_crossentropy",
optimizer="Adam", metrics=["sparse_categorical_accuracy"])
model.fit(X_train, y_train, epochs=25)
Thank you so much, Alex! this is my first project in the area of AI. I’m going through some haha suffocations!
– Rickson Gomes Monteiro