3
I created a prediction model on R
using ARIMA with a 2-year daily historical basis (2018-2019). In this model I use Multivariate Analysis to create predictions.
dados = dados_dput
QTD_PED_TS = as.numeric(dados[,c("QTD_PEDIDOS_PG")])
QTD_PED_TS = ts(QTD_PED_TS, start = c(2018,1), frequency = 365)
#Criando Série Temporais
QTD_PED = as.numeric(dados[,c("QTD_PEDIDOS_PG")])
QTD_PED = ts(QTD_PED, start = c(2018,1), end = c(2019,334), frequency = 365)
FL_FDS = as.numeric(dados[,c("FL_FDS")])
FL_FDS = ts(FL_FDS, start = c(2018,1), end = c(2019,334), frequency = 365)
FL_DIA_SEMANA = as.numeric(dados[,c("FL_DIA_SEMANA")])
FL_DIA_SEMANA = ts(FL_DIA_SEMANA, start = c(2018,1), end = c(2019,334), frequency = 365)
FL_FREE = as.numeric(dados[,c("FL_FREE")])
FL_FREE = ts(FL_FREE, start = c(2018,1), end = c(2019,334), frequency = 365)
FL_DIA_MES = as.numeric(dados[,c("FL_DIA_MES")])
FL_DIA_MES = ts(FL_DIA_MES, start = c(2018,1), end = c(2019,334), frequency = 365)
#BASE TREINO E TESTE
QTD_PED_treino = window(QTD_PED, start=c(2018,1), end=c(2019,334))
QTD_PED_teste = window(QTD_PED, start=c(2019,334))
#MODELO ARIMA
library(forecast)
QTD_PED_modelo = auto.arima(QTD_PED_treino, xreg = cbind(FL_FDS,FL_FREE,FL_DIA_MES,FL_DIA_SEMANA), trace = T, stepwise = T, approximation = T, seasonal = T)
QTD_PED_Prev = forecast(QTD_PED_modelo, xreg = cbind(FL_FDS,FL_FREE,FL_DIA_MES,FL_DIA_SEMANA), h = 365)
#VISUALIZAÇÃO
plot(QTD_PED_TS)
lines(QTD_PED_Prev$mean, col="red")
In this my model has 5 Variables: QTD_PED
(Order Quantity) which is the main variable, FL_FDS
(Days with Weekend), FL_FREE
(Days with Holidays and Amendments), FL_DIA_MES
(Days of the Month) and FL_DIA_SEMANA
(Days of the Week) which are the secondary variables.
I generated my prediction and came up with the real values. But I realized that the predicted values and the real values had a displacement/lag between a series and another.
Regarding Orders (what I want to predict) the actual quantity is lower on the weekend, but my model predicted that this low volume of orders happens on Thursday and Friday.
Analyzing the predicted data I realized that my model despite having a reasonable accuracy, he could not understand which days of the week begins the month and ended up causing this displacement. I added a variable with the days of the month and the day of the week to help my model and despite improving accuracy, the model still can not get the days of the week.
My question is basically conceptual, how can I avoid this kind dislocation/ lag in my prediction? Do I enter another variable so that my algorithm understands the behavior of the variable? Or is there any other method that helps in this sense?
Follows the dput
with the data:
dados_dput = structure(list(DT_PAGTO = structure(c(1514764800, 1514851200,
1514937600, 1515024000, 1515110400, 1515196800, 1515283200, 1515369600,
1515456000, 1515542400, 1515628800, 1515715200, 1515801600, 1515888000,
1515974400, 1516060800, 1516147200, 1516233600, 1516320000, 1516406400,
1516492800, 1516579200, 1516665600, 1516752000, 1516838400, 1516924800,
1517011200, 1517097600, 1517184000, 1517270400, 1517356800, 1517443200,
1517529600, 1517616000, 1517702400, 1517788800, 1517875200, 1517961600,
1518048000, 1518134400, 1518220800, 1518307200, 1518393600, 1518480000,
1518566400, 1518652800, 1518739200, 1518825600, 1518912000, 1518998400,
1519084800, 1519171200, 1519257600, 1519344000, 1519430400, 1519516800,
1519603200, 1519689600, 1519776000, 1519862400, 1519948800, 1520035200,
1520121600, 1520208000, 1520294400, 1520380800, 1520467200, 1520553600,
1520640000, 1520726400, 1520812800, 1520899200, 1520985600, 1521072000,
1521158400, 1521244800, 1521331200, 1521417600, 1521504000, 1521590400,
1521676800, 1521763200, 1521849600, 1521936000, 1522022400, 1522108800,
1522195200, 1522281600, 1522368000, 1522454400, 1522540800, 1522627200,
1522713600, 1522800000, 1522886400, 1522972800, 1523059200, 1523145600,
1523232000, 1523318400, 1523404800, 1523491200, 1523577600, 1523664000,
1523750400, 1523836800, 1523923200, 1524009600, 1524096000, 1524182400,
1524268800, 1524355200, 1524441600, 1524528000, 1524614400, 1524700800,
1524787200, 1524873600, 1524960000, 1525046400, 1525132800, 1525219200,
1525305600, 1525392000, 1525478400, 1525564800, 1525651200, 1525737600,
1525824000, 1525910400, 1525996800, 1526083200, 1526169600, 1526256000,
1526342400, 1526428800, 1526515200, 1526601600, 1526688000, 1526774400,
1526860800, 1526947200, 1527033600, 1527120000, 1527206400, 1527292800,
1527379200, 1527465600, 1527552000, 1527638400, 1527724800, 1527811200,
1527897600, 1527984000, 1528070400, 1528156800, 1528243200, 1528329600,
1528416000, 1528502400, 1528588800, 1528675200, 1528761600, 1528848000,
1528934400, 1529020800, 1529107200, 1529193600, 1529280000, 1529366400,
1529452800, 1529539200, 1529712000, 1529798400, 1529884800, 1529971200,
1530057600, 1530144000, 1530230400, 1530316800, 1530403200, 1530489600,
1530576000, 1530662400, 1530748800, 1530835200, 1530921600, 1531008000,
1531094400, 1531180800, 1531267200, 1531353600, 1531440000, 1531526400,
1531612800, 1531699200, 1531785600, 1531872000, 1531958400, 1532044800,
1532131200, 1532217600, 1532304000, 1532390400, 1532476800, 1532563200,
1532649600, 1532736000, 1532822400, 1532908800, 1532995200, 1533081600,
1533168000, 1533254400, 1533340800, 1533427200, 1533513600, 1533600000,
1533686400, 1533772800, 1533859200, 1533945600, 1534032000, 1534118400,
1534204800, 1534291200, 1534377600, 1534464000, 1534550400, 1534636800,
1534723200, 1534809600, 1534896000, 1534982400, 1535068800, 1535155200,
1535241600, 1535328000, 1535414400, 1535500800, 1535587200, 1535673600,
1535760000, 1535846400, 1535932800, 1536019200, 1536105600, 1536192000,
1536278400, 1536364800, 1536451200, 1536537600, 1536624000, 1536710400,
1536796800, 1536883200, 1536969600, 1537056000, 1537142400, 1537228800,
1537315200, 1537401600, 1537488000, 1537574400, 1537660800, 1537747200,
1537833600, 1537920000, 1538006400, 1538092800, 1538179200, 1538265600,
1538352000, 1538438400, 1538524800, 1538611200, 1538697600, 1538784000,
1538870400, 1538956800, 1539043200, 1539129600, 1539216000, 1539302400,
1539388800, 1539475200, 1539561600, 1539648000, 1539734400, 1539820800,
1539907200, 1539993600, 1540080000, 1540166400, 1540252800, 1540339200,
1540425600, 1540512000, 1540598400, 1540684800, 1540771200, 1540857600,
1540944000, 1541030400, 1541116800, 1541203200, 1541289600, 1541376000,
1541462400, 1541548800, 1541635200, 1541721600, 1541808000, 1541894400,
1541980800, 1542067200, 1542153600, 1542240000, 1542326400, 1542412800,
1542499200, 1542585600, 1542672000, 1542758400, 1542844800, 1542931200,
1543017600, 1543104000, 1543190400, 1543276800, 1543363200, 1543449600,
1543536000, 1543622400, 1543708800, 1543795200, 1543881600, 1543968000,
1544054400, 1544140800, 1544227200, 1544313600, 1544400000, 1544486400,
1544572800, 1544659200, 1544745600, 1544832000, 1544918400, 1545004800,
1545091200, 1545177600, 1545264000, 1545350400, 1545436800, 1545523200,
1545609600, 1545696000, 1545782400, 1545868800, 1545955200, 1546041600,
1546128000, 1546214400, 1546300800, 1546387200, 1546473600, 1546560000,
1546646400, 1546732800, 1546819200, 1546905600, 1546992000, 1547078400,
1547164800, 1547251200, 1547337600, 1547424000, 1547510400, 1547596800,
1547683200, 1547769600, 1547856000, 1547942400, 1548028800, 1548115200,
1548201600, 1548288000, 1548374400, 1548460800, 1548547200, 1548633600,
1548720000, 1548806400, 1548892800, 1548979200, 1549065600, 1549152000,
1549238400, 1549324800, 1549411200, 1549497600, 1549584000, 1549670400,
1549756800, 1549843200, 1549929600, 1550016000, 1550102400, 1550188800,
1550275200, 1550361600, 1550448000, 1550534400, 1550620800, 1550707200,
1550793600, 1550880000, 1550966400, 1551052800, 1551139200, 1551225600,
1551312000, 1551398400, 1551484800, 1551571200, 1551657600, 1551744000,
1551830400, 1551916800, 1552003200, 1552089600, 1552176000, 1552262400,
1552348800, 1552435200, 1552521600, 1552608000, 1552694400, 1552780800,
1552867200, 1552953600, 1553040000, 1553126400, 1553212800, 1553299200,
1553385600, 1553472000, 1553558400, 1553644800, 1553731200, 1553817600,
1553904000, 1553990400, 1554076800, 1554163200, 1554249600, 1554336000,
1554422400, 1554508800, 1554595200, 1554681600, 1554768000, 1554854400,
1554940800, 1555027200, 1555113600, 1555200000, 1555286400, 1555372800,
1555459200, 1555545600, 1555632000, 1555718400, 1555804800, 1555891200,
1555977600, 1556064000, 1556150400, 1556236800, 1556323200, 1556409600,
1556496000, 1556582400, 1556668800, 1556755200, 1556841600, 1556928000,
1557014400, 1557100800, 1557187200, 1557273600, 1557360000, 1557446400,
1557532800, 1557619200, 1557705600, 1557792000, 1557878400, 1557964800,
1558051200, 1558137600, 1558224000, 1558310400, 1558396800, 1558483200,
1558569600, 1558656000, 1558742400, 1558828800, 1558915200, 1559001600,
1559088000, 1559174400, 1559260800, 1559347200, 1559433600, 1559520000,
1559606400, 1559692800, 1559779200, 1559865600, 1559952000, 1560038400,
1560124800, 1560211200, 1560297600, 1560384000, 1560470400, 1560556800,
1560643200, 1560729600, 1560816000, 1560902400, 1560988800, 1561075200,
1561161600, 1561248000, 1561334400, 1561420800, 1561507200, 1561593600,
1561680000, 1561766400, 1561852800, 1561939200, 1562025600, 1562112000,
1562198400, 1562284800, 1562371200, 1562457600, 1562544000, 1562630400,
1562716800, 1562803200, 1562889600, 1562976000, 1563062400, 1563148800,
1563235200, 1563321600, 1563408000, 1563494400, 1563580800, 1563667200,
1563753600, 1563840000, 1563926400, 1564012800, 1564099200, 1564185600,
1564272000, 1564358400, 1564444800, 1564531200, 1564617600, 1564704000,
1564790400, 1564876800, 1564963200, 1565049600, 1565136000, 1565222400,
1565308800, 1565395200, 1565481600, 1565568000, 1565654400, 1565740800,
1565827200, 1565913600, 1.566e+09, 1566086400, 1566172800, 1566259200,
1566345600, 1566432000, 1566518400, 1566604800, 1566691200, 1566777600,
1566864000, 1566950400, 1567036800, 1567123200, 1567209600, 1567296000,
1567382400, 1567468800, 1567555200, 1567641600, 1567728000, 1567814400,
1567900800, 1567987200, 1568073600, 1568160000, 1568246400, 1568332800,
1568419200, 1568505600, 1568592000, 1568678400, 1568764800, 1568851200,
1568937600, 1569024000, 1569110400, 1569196800, 1569283200, 1569369600,
1569456000, 1569542400, 1569628800, 1569715200, 1569801600, 1569888000,
1569974400, 1570060800, 1570147200, 1570233600, 1570320000, 1570406400,
1570492800, 1570579200, 1570665600, 1570752000, 1570838400, 1570924800,
1571011200, 1571097600, 1571184000, 1571270400, 1571356800, 1571443200,
1571529600, 1571616000, 1571702400, 1571788800, 1571875200, 1571961600,
1572048000, 1572134400, 1572220800, 1572307200, 1572393600, 1572480000,
1572566400, 1572652800, 1572739200, 1572825600, 1572912000, 1572998400,
1573084800, 1573171200, 1573257600, 1573344000, 1573430400, 1573516800,
1573603200, 1573689600, 1573776000, 1573862400, 1573948800, 1574035200,
1574121600, 1574208000, 1574294400, 1574380800, 1574467200, 1574553600,
1574640000, 1574726400, 1574812800, 1574899200, 1574985600, 1575072000,
1575158400, 1575244800, 1575331200, 1575417600, 1575504000, 1575590400,
1575676800, 1575763200, 1575849600, 1575936000, 1576022400, 1576108800,
1576195200, 1576281600, 1576368000, 1576454400, 1576540800, 1576627200,
1576713600, 1576800000, 1576886400, 1576972800, 1577059200, 1577145600,
1577232000, 1577318400, 1577404800, 1577491200, 1577577600, 1577664000,
1577750400, 1577836800, 1577923200, 1578009600, 1578096000, 1578182400,
1578268800, 1578355200, 1578441600, 1578528000, 1578614400, 1578700800,
1578787200, 1578873600, 1578960000, 1579046400, 1579132800, 1579219200,
1579305600, 1579392000, 1579478400, 1579564800, 1579651200), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), QTD_PEDIDOS_PG = c(429, 1472, 1473,
1404, 1432, 1326, 486, 1492, 1369, 1361, 1364, 1310, 697, 667,
1947, 1878, 1702, 1396, 1511, 834, 737, 2059, 1934, 1739, 972,
1465, 970, 865, 2339, 2084, 1789, 1885, 1683, 1102, 839, 2085,
1968, 1766, 1689, 1442, 829, 638, 736, 722, 1543, 1853, 1593,
1098, 847, 2376, 2081, 2055, 1943, 1542, 1022, 862, 2063, 2207,
1917, 1874, 1541, 766, 634, 2029, 1731, 1660, 1591, 1439, 767,
613, 1910, 1730, 1656, 1472, 1760, 865, 753, 2205, 1870, 1977,
1949, 1792, 1011, 857, 2463, 2188, 1946, 1729, 495, 714, 702,
2249, 1926, 1729, 1667, 1409, 754, 587, 1919, 1793, 1696, 1739,
1490, 843, 741, 2080, 1880, 1994, 1885, 1570, 813, 837, 2303,
2166, 2144, 2157, 1809, 890, 653, 1237, 828, 2169, 1763, 1371,
795, 728, 1914, 1663, 1657, 1652, 1480, 811, 720, 2055, 1800,
1759, 1674, 1623, 727, 124, 2435, 2087, 1974, 1778, 1713, 1095,
1151, 2607, 2333, 1695, 786, 1158, 767, 755, 1988, 1754, 1603,
1424, 1403, 795, 654, 1916, 1674, 1707, 1586, 1429, 764, 586,
1995, 1751, 1760, 1635, 890, 845, 2222, 1946, 1610, 1901, 1641,
889, 602, 1711, 1731, 1579, 1420, 1154, 736, 536, 777, 1780,
1694, 1621, 1405, 860, 673, 1890, 1730, 1655, 1733, 1538, 942,
840, 2101, 2044, 1902, 1942, 1723, 994, 908, 2320, 1906, 1903,
1676, 1272, 800, 722, 1973, 1677, 1718, 1527, 1421, 825, 700,
2024, 1866, 1681, 1688, 1494, 815, 701, 2174, 1738, 2054, 1968,
1764, 968, 864, 2526, 2352, 2323, 2128, 1839, 974, 970, 2325,
1838, 1774, 1557, 625, 773, 665, 2011, 1837, 1810, 1768, 1536,
794, 882, 2174, 1976, 1965, 1821, 1765, 1058, 936, 2494, 2296,
2183, 2077, 1759, 932, 817, 2314, 1833, 1839, 1595, 1438, 741,
739, 1865, 1753, 1639, 1450, 656, 707, 658, 1886, 1864, 1804,
1760, 1559, 895, 769, 2010, 2074, 1882, 1860, 1876, 893, 912,
2424, 2137, 1777, 1483, 569, 704, 553, 1910, 1708, 1491, 1514,
1309, 725, 649, 1794, 1664, 1479, 583, 1007, 686, 614, 1033,
863, 2064, 1865, 1576, 857, 860, 2080, 1959, 1904, 1804, 1458,
711, 630, 1683, 1576, 1293, 1361, 1186, 640, 636, 1687, 1466,
1451, 1404, 1334, 808, 618, 1709, 1543, 1538, 1293, 1194, 655,
432, 401, 365, 1135, 987, 791, 522, 365, 444, 334, 1084, 1186,
1092, 995, 1739, 1288, 1064, 1061, 1113, 1118, 773, 640, 1443,
1327, 1399, 1363, 1219, 702, 657, 1855, 1588, 1608, 1411, 736,
796, 827, 2194, 2037, 1721, 1616, 1480, 786, 786, 1928, 1732,
1638, 1589, 1362, 722, 714, 2041, 1852, 1811, 1721, 1506, 694,
902, 2370, 2287, 1953, 2029, 1916, 1129, 1160, 2657, 2270, 1814,
1878, 1418, 726, 573, 660, 653, 1413, 1756, 1457, 706, 731, 1871,
1837, 1715, 1696, 1444, 768, 747, 2086, 1853, 1796, 1698, 1532,
857, 845, 2252, 2060, 1973, 1896, 1541, 808, 777, 2150, 1761,
1590, 1482, 1286, 646, 631, 1739, 1655, 1633, 1570, 1416, 716,
655, 1906, 1795, 1730, 1365, 511, 642, 668, 2200, 1969, 1997,
2007, 1771, 390, 882, 2269, 1729, 767, 1897, 1360, 665, 599,
1749, 1488, 1419, 1444, 1223, 675, 623, 1929, 1661, 1647, 1519,
1380, 721, 736, 2043, 1685, 1927, 1780, 1646, 845, 884, 2437,
2217, 2024, 2041, 1803, 883, 707, 2094, 1689, 1475, 1433, 1302,
645, 608, 1747, 1580, 1617, 1529, 1011, 800, 711, 1943, 1672,
1488, 655, 1136, 718, 747, 2185, 1914, 1803, 1734, 1474, 781,
684, 1864, 1554, 1488, 1198, 1153, 589, 413, 950, 616, 1552,
1396, 1278, 764, 614, 1791, 1518, 1526, 1451, 1357, 762, 674,
1936, 1855, 1730, 1788, 1616, 894, 821, 2188, 1954, 1856, 1653,
1278, 652, 592, 1887, 1582, 1544, 1517, 1293, 753, 590, 1911,
1788, 1620, 1611, 1494, 798, 706, 2001, 1746, 1695, 1807, 1582,
865, 826, 2312, 2162, 1718, 2058, 1647, 894, 740, 2051, 1799,
1671, 1372, 1061, 596, 578, 1886, 1634, 1536, 1557, 1430, 762,
690, 2047, 1952, 1853, 1822, 1568, 911, 767, 2138, 2111, 2046,
1990, 1737, 875, 700, 2156, 2055, 1712, 1587, 1379, 728, 599,
1794, 1749, 1619, 1526, 1408, 618, 611, 1781, 1554, 1666, 1589,
1505, 827, 613, 1935, 1817, 1897, 1936, 1794, 934, 777, 2338,
2096, 1950, 1875, 1622, 645, 610, 2007, 1646, 1547, 1428, 1329,
733, 586, 1748, 1660, 1634, 1443, 538, 693, 658, 1932, 1555,
824, 1788, 1607, 835, 740, 2075, 1944, 1948, 1746, 1544, 847,
597, 1790, 1544, 1441, 1277, 1166, 719, 529, 1592, 1392, 1467,
1511, 1313, 778, 638, 1756, 1581, 1559, 1419, 1285, 678, 507,
1021, 482, 370, 1005, 923, 506, 401, 735, 498, 291, 1008, 857,
497, 555, 1554, 1315, 1318, 1329, 1183, 689, 555, 1684, 1501,
1505, 1505, 1350, 800, 667, 1827, 1428, 1832), FL_FDS = c(0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0), FL_FREE = c(2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 3, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2,
0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), FL_DIA_MES = c(1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23,
24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
), FL_DIA_SEMANA = c(2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1,
2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4)), row.names = c(NA, -751L), class = "data.frame")
Sends the
dput()
of the data used please for we can help– Tomás Barcellos
Hi @Tomásbarcellos I’m having a hard time doing the dput. R shows me the error message: "Error in dput(dates_base, 50) : 'file' must be a Character string or Connection." I don’t know how to fix this.
– Izak Mandrak
Seria
dput(head(dados_base, 50))
. Thedput
takes only one argument. Thehead(x, 50)
is to make the base smaller.– Tomás Barcellos
That’s true. I cheated, now it’s gone.
– Izak Mandrak
dput data is not the same model data. Example, it does not have
QTD_USU
and the day of the week is extended and notFL_DS
, etc...– Tomás Barcellos
It’s just that when I went to create the Time Series I renamed it, but I’ll fix it to be clearer.
– Izak Mandrak
I updated the model with the variables from my database. The problems that I am having that the weekend has low level of orders, ie, with real values Saturday and Sunday have few requests, but in my forecast the days that have few orders are on Thursday and Friday. There’s this shift of days I can’t fix.
– Izak Mandrak
Error:
auto.arima can only handle univariate time series
. Uses the reprex to reproduce the error, please.– Tomás Barcellos
These variables are time series, I added the code to facilitate understanding.
– Izak Mandrak
Please use reprex to generate example, each time you have a different error. Now I have
Error in window.default(x, ...) : 'start' cannot be after 'end'
when rotating the line generatingQTD_PED_teste
– Tomás Barcellos
I’m trying to research Reprex, but I have no idea how to use it, I need an example.
– Izak Mandrak
Let’s go continue this discussion in chat.
– Izak Mandrak