0
I need to deal with a base junction problem in the Python language. I have three layers of folders that I need to enter, find the file and merge into a dataframe. The layers being: year, month and day. The files containing the data are of the type .txt and I’m interpreting the algorithm in Jupyter Notebook. The algorithm to put them together I have done. I will try to present them in parts. 
First I get the folders of the directory containing the years old:
# Directory
os.chdir('diretorio')
# Moving first layer - year
lista_dir1 = [f for f in glob.glob('20*')]
lista_dir1.sort()
lista_dir1
After creating a list with the directory folders, I make a loop to traverse each element of the list and map the folders of months every year:
contador = 0
for t in range(len(lista_dir1)):
    prim_cam = "diretorio" + '/' + lista_dir1[t] 
    os.chdir(prim_cam)
    lista_dir2 = [f for f in glob.glob('*')]
    lista_dir2 = list(map(int, lista_dir2))
    lista_dir2.sort()
    lista_dir2 = list(map(str, lista_dir2))
After entering the year, mepear the folders of the months and create a second list those months, I enter each month and search for the databases of days, creating a third list of days:
for p in range(len(lista_dir2)):
        segun_cam = prim_cam + '/' + lista_dir2[p]
        print(segun_cam)
        os.chdir(segun_cam)
        lista_dir3 = [f for f in glob.glob('*')]
        lista_dir3 = list(map(int, lista_dir3))
        lista_dir3.sort()
        lista_dir3 = list(map(str, lista_dir3))
Finally, I select each database, get the data and merge into a dataframe:
for y in range(lista_dir3):
            dados = open(lista_dir3[y])
            yourList = dados.readlines()
            if((t == 0) and (p == 0) and (y == 0)):
                dados_compl = pd.DataFrame(columns = list(yourList[0].split(',')))
                for l in range(1,len(yourList)):
                    dados_compl.loc[l + contador*1440] = list(yourList[l].split(',')) 
                contador += 1
            else:
                for l in range(1,len(yourList)):
                    dados_compl.loc[l + contador*1440] = list(yourList[l].split(',')) 
                contador += 1
Still, I did an accountant called contador to index my dataframe. 
Well, now come the questions.
1. I am using notebook jupyter and the process has been time consuming, there is difference of processing if I run the program in another Python interpreter?
2. The columns of my dataframe are of type Object
Date                     object
Time                     object
Global_active_power      object
Global_reactive_power    object
Voltage                  object
Global_intensity         object
Sub_metering_1           object
Sub_metering_2           object
Sub_metering_3\n         object
dtype: object
it would be advisable to turn the numbers to float, this would make my processing faster?
3. I used those functions
dados = open(lista_dir3[y])
                yourList = dados.readlines()
to read the data, would there be a more efficient alternative?
4. What is a type of data object? I program a lot in R and I don’t remember seeing that kind of data.
Sincerely yours!