1
R s are matrices of the type
[120.0, 77.34999999999998, 12.639999999999974, 39.270000000000074, 62.879999999999846, 54.549999999999656, 2.400000000000313, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 70.0, 70.0, 0.0, 0.0, 0.0, 62.879999999999846, 54.549999999999656, 2.400000000000313, 50.0, 0.0, 0.0, 0.0, 7.349999999999995, 12.639999999999974, 39.270000000000074, 62.879999999999846, 54.549999999999656, 2.400000000000313, 50.0, 50.0, 50.0, 50.0, 50.0, 0.0, 0.0]
i with this command create a new matrix formed with the maximum values of the matrices R...
input: matriz=np.array([[R], [R1], [R2], [R3], [R4], [R5], [R6]])
Probabilidades=np.max(matriz, axis=0)
output:[[150. 77.35 12.64 39.27 62.88 54.55 2.4 50. 50. 50.
50. 50. 50. 50. 70. 70. 0. 0. 0. 62.88
54.55 2.4 50. 0. 0. 0. 7.35 12.64 89.27 62.88
54.55 2.4 50. 50. 50. 50. 50. 0. 50. ]]
I now want to normalize/Shut this, so that the maximum value is 100 (or 1) and not 150.
input: from sklearn import preprocessing
import numpy as np
matriz=np.array([[R], [R1], [R2], [R3], [R4], [R5], [R6]])
Probabilidades=np.max(matriz, axis=0)
matriz1 = preprocessing.MinMaxScaler()
ProbNormalizada= matriz1.fit_transform(Probabilidades)
print(ProbNormalizada)
Quano has in: matrix=np.array([[R], [R1], [R2], [R3], [R4], [R5], [R6]]), R s are matrices of type
– user146110
[120.0, 77.34999999999998, 12.639999999999974, 39.270000000000074, 62.879999999999846, 54.549999999999656, 2.40000000313, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 70.0, 70.0, 0.0, 0.0, 62.879999999846, 54.549999999656, 2.40000000313, 50.0, 0.0, 0.0, 0.0, 7.349999999999995, 12.639999999999974, 39.270000000000074, 62.879999999999999846, 54.549999999999656, 2.400000000000313, 50.0, 50.0, 50.0, 50.0, 50.0, 0.0, 0.0]
– user146110
and I with the command want a new matrix formed with the maximum values of the matrices R...
– user146110