0
Hello. I searched all over the Internet and couldn’t find.
Someone has an alternative to perform feature extraction on images with the python Kanade Lucas Tomasi (KLT) algorithm?
0
Hello. I searched all over the Internet and couldn’t find.
Someone has an alternative to perform feature extraction on images with the python Kanade Lucas Tomasi (KLT) algorithm?
2
Opencv works with this (or variants of it) algorithm.
Sparse Optical flow: These Algorithms, like the Kanade-Lucas-Tomashi (KLT) Feature tracker, track the Location of a few Feature points in an image.
The example creates a simple app that tracks some points in a video.
To decide the points the function is used cv.goodFeaturesToTrack()
, Take the first frame, some points (in the corners) are detected with the Shi-Tomasi Corner Detector function, then these points are tracked iteratively through the Lucas-Kanade optical flow. The previous frame and stitches, and the next frame are passed to the function cv.calcOpticalFlowPyrLK()
. Return the next points and some status numbers that can be 1 if the next point is found, if not zero.
See the code:
import numpy as np
import cv2 as cv
cap = cv.VideoCapture('slow.flv')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY)
p0 = cv.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while(1):
ret,frame = cap.read()
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv.add(frame,mask)
cv.imshow('frame',img)
k = cv.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv.destroyAllWindows()
cap.release()
Upshot:
Source: https://docs.opencv.org/3.4/d7/d8b/tutorial_py_lucas_kanade.html
Browser other questions tagged python opencv image-processing artificial-intelligence computer-science
You are not signed in. Login or sign up in order to post.
Thanks for your help. @Sidon
– FabianoF