Felipe I’ll give you 3 models that should help you with your answer.
1 - Various types of color scales (I think it’s as close as you want, but I couldn’t get it to work on the Stackoverflow Snippet)
https://codepen.io/stevepepple/pen/adRJaB?q=color+scaling&limit=all&type=type-pens
2 - Capture the Average Color of an Image. (First you have to convert img to Base64) View in Snippet below.
var rgb = getAverageRGB(document.getElementById('i'));
document.body.style.backgroundColor = 'rgb('+rgb.r+','+rgb.g+','+rgb.b+')';
function getAverageRGB(imgEl) {
var blockSize = 5, // only visit every 5 pixels
defaultRGB = {r:0,g:0,b:0}, // for non-supporting envs
canvas = document.createElement('canvas'),
context = canvas.getContext && canvas.getContext('2d'),
data, width, height,
i = -4,
length,
rgb = {r:0,g:0,b:0},
count = 0;
if (!context) {
return defaultRGB;
}
height = canvas.height = imgEl.naturalHeight || imgEl.offsetHeight || imgEl.height;
width = canvas.width = imgEl.naturalWidth || imgEl.offsetWidth || imgEl.width;
context.drawImage(imgEl, 0, 0);
try {
data = context.getImageData(0, 0, width, height);
} catch(e) {
/* security error, img on diff domain */alert('x');
return defaultRGB;
}
length = data.data.length;
while ( (i += blockSize * 4) < length ) {
++count;
rgb.r += data.data[i];
rgb.g += data.data[i+1];
rgb.b += data.data[i+2];
}
// ~~ used to floor values
rgb.r = ~~(rgb.r/count);
rgb.g = ~~(rgb.g/count);
rgb.b = ~~(rgb.b/count);
return rgb;
}
Setting the BODY's background to the average color in the following image:
<br><br>
<img id="i" src="">
Source: https://codepen.io/influxweb/pen/LpoXba
3 - Achieve a color palette from an image. Even has extension pro Chrome.
Project Link on Github: https://github.com/unindented/palette-creator
Extension: https://chrome.google.com/webstore/detail/palette-creator/oolpphfmdmjbojolagcbgdemojhcnlod
Article in Portuguese to better understand how hexadecimal color works:
http://serprogramador.com.br/artigos/topico/css/Como-entender-os-padroes-de-cores-RGB-RGBA-Hexadecimal
It should be possible, this site does this https://highintegritydesign.com/tools/tinter-shader/
– PauloHDSousa
Opa vlw, I’ll take a look at the source code, if I get anything put here...
– Felipe Duarte