In my view, the first thing you should get is the list of terms used in a given column (whose answer I took from here):
CREATE FUNCTION dbo.Split
(
@RowData nvarchar(2000),
@SplitOn nvarchar(5)
)
RETURNS @RtnValue table
(
Id int identity(1,1),
Data nvarchar(100)
)
AS
BEGIN
Declare @Cnt int
Set @Cnt = 1
While (Charindex(@SplitOn,@RowData)>0)
Begin
Insert Into @RtnValue (data)
Select
Data = ltrim(rtrim(Substring(@RowData,1,Charindex(@SplitOn,@RowData)-1)))
Set @RowData = Substring(@RowData,Charindex(@SplitOn,@RowData)+1,len(@RowData))
Set @Cnt = @Cnt + 1
End
Insert Into @RtnValue (data)
Select Data = ltrim(rtrim(@RowData))
Return
END
CREATE FUNCTION dbo.SplitAll(@SplitOn nvarchar(5))
RETURNS @RtnValue table
(
Id int identity(1,1),
Data nvarchar(100)
)
AS
BEGIN
DECLARE My_Cursor CURSOR FOR SELECT Nome FROM dbo.clientes
DECLARE @description varchar(50)
OPEN My_Cursor
FETCH NEXT FROM My_Cursor INTO @description
WHILE @@FETCH_STATUS = 0
BEGIN
INSERT INTO @RtnValue
SELECT Data FROM dbo.Split(@description, @SplitOn)
FETCH NEXT FROM My_Cursor INTO @description
END
CLOSE My_Cursor
DEALLOCATE My_Cursor
RETURN
END
SELECT DISTINCT Data FROM dbo.SplitAll(N' ')
With this word list, you can bring partitions from your table from the found terms. This is human labor, unfortunately, but with it, the operations of LIKE
are more reasonable.
Still, if you don’t want to use the LIKE
, my suggestion is the implementation of the Levenshtein distance function in SQL Server, which I transcribe below of the above-mentioned reply:
-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- http://blog.softwx.net/2014/12/optimizing-levenshtein-algorithm-in-tsql.html
--
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [dbo].[Levenshtein](
@s nvarchar(4000)
, @t nvarchar(4000)
, @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
DECLARE @distance int = 0 -- return variable
, @v0 nvarchar(4000)-- running scratchpad for storing computed distances
, @start int = 1 -- index (1 based) of first non-matching character between the two string
, @i int, @j int -- loop counters: i for s string and j for t string
, @diag int -- distance in cell diagonally above and left if we were using an m by n matrix
, @left int -- distance in cell to the left if we were using an m by n matrix
, @sChar nchar -- character at index i from s string
, @thisJ int -- temporary storage of @j to allow SELECT combining
, @jOffset int -- offset used to calculate starting value for j loop
, @jEnd int -- ending value for j loop (stopping point for processing a column)
-- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
, @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1)) -- length of smaller string
, @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1)) -- length of larger string
, @lenDiff int -- difference in length between the two strings
-- if strings of different lengths, ensure shorter string is in s. This can result in a little
-- faster speed by spending more time spinning just the inner loop during the main processing.
IF (@sLen > @tLen) BEGIN
SELECT @v0 = @s, @i = @sLen -- temporarily use v0 for swap
SELECT @s = @t, @sLen = @tLen
SELECT @t = @v0, @tLen = @i
END
SELECT @max = ISNULL(@max, @tLen)
, @lenDiff = @tLen - @sLen
IF @lenDiff > @max RETURN NULL
-- suffix common to both strings can be ignored
WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
SELECT @sLen = @sLen - 1, @tLen = @tLen - 1
IF (@sLen = 0) RETURN @tLen
-- prefix common to both strings can be ignored
WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1))
SELECT @start = @start + 1
IF (@start > 1) BEGIN
SELECT @sLen = @sLen - (@start - 1)
, @tLen = @tLen - (@start - 1)
-- if all of shorter string matches prefix and/or suffix of longer string, then
-- edit distance is just the delete of additional characters present in longer string
IF (@sLen <= 0) RETURN @tLen
SELECT @s = SUBSTRING(@s, @start, @sLen)
, @t = SUBSTRING(@t, @start, @tLen)
END
-- initialize v0 array of distances
SELECT @v0 = '', @j = 1
WHILE (@j <= @tLen) BEGIN
SELECT @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
SELECT @j = @j + 1
END
SELECT @jOffset = @max - @lenDiff
, @i = 1
WHILE (@i <= @sLen) BEGIN
SELECT @distance = @i
, @diag = @i - 1
, @sChar = SUBSTRING(@s, @i, 1)
-- no need to look beyond window of upper left diagonal (@i) + @max cells
-- and the lower right diagonal (@i - @lenDiff) - @max cells
, @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
, @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END
WHILE (@j <= @jEnd) BEGIN
-- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
SELECT @left = UNICODE(SUBSTRING(@v0, @j, 1))
, @thisJ = @j
SELECT @distance =
CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag --match, no change
ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag --substitution
WHEN @left < @distance THEN @left -- insertion
ELSE @distance -- deletion
END END
SELECT @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
, @diag = @left
, @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) then @jEnd + 2 else @thisJ + 1 end
END
SELECT @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
END
RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END
Use:
... WHERE dbo.Levenshtein(@Coluna1, @Coluna2, 5) <= 5
It does not need to be 5 the maximum coefficient of difference. By the tests, you will know which is the best coefficient to apply.
This has come very, very close to what I really wanted, and this next one is enough to begin with. Even this function opened possibility for other things. Thank you very much for the answer beast.
– William Novak