2
I’m working with data.frame
and it is organized in long format. However I would like to put in wide format according to a variable (FAT2
) so that the provisions of the columns would remain: AVA
, FAT1
, Banana
, Ingá
, Gliricídia
, Pupunha
.
However, I would not like to convert to matrix, and then again to data.frame
. The function melt
package reshape2
does the opposite of what I need, because it stacks the variables.
dice:
dados<-structure(list(AVA = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), .Label = c("Março de 2016",
"Agosto de 2016", "Dezembro de 2016", "Março de 2017", "Agosto de 2017",
"Fevereiro de 2018", "Abril de 2018", "Agosto de 2018"), class = c("ordered",
"factor")), FAT1 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Antes", "Após"), class = "factor"),
FAT2 = structure(c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L
), .Label = c("Banana", "Gliricídia", "Ingá", "Pupunha",
"Solteiro"), class = "factor"), LUX = c(39018.33, 38870,
40375, 39686.67, 53363.33, 55666.67, 56888.33, 57768.33,
5029.33, 4758, 4810.67, 5044.67, 17840.67, 2917.33, 8508.67,
9960.67, 3014, 4704.67, 5712, 3815.33, 4683.33, 49213.33,
54353.33, 57226.67, 13939.33, 13869.33, 5100.67, 15864, 1809.47,
1814.53, 6084.67, 2357.33, 28333.33, 37586.67, 35640, 36833.33,
55886.67, 59886.67, 63193.33, 63346.67, 25313.33, 36593.33,
24466.67, 38420, 26700, 29106.67, 36746.67, 52300, 25586.67,
13106.67, 2782.67, 15677.33, 18310.67, 2864.67, 1893.13,
2330, 5256.67, 5313.33, 3916, 5219.33, 5176.67, 6183.33,
2959.33, 3823.33, 803.93, 1815.87, 1629.93, 1886.47, 7705.33,
2350, 2322.6, 1715.8, 25313.33, 23700, 38420, 28253.33, 26700,
11562.67, 49326.67, 52300, 9258, 7078, 6374, 7147, 6435,
8366, 9639, 129220, 3481, 1973.8, 4097, 3584, 4189, 1573,
3312, 2488, 2886, 2908, 4489, 4047, 4641, 3429, 3434, 4903,
4341, 4352, 5019, 8046, 4060, 4552, 5445, 7159, 7870, 4004,
5660, 9790, 8772, 6728, 129010, 128520, 27106.67, 19360,
28766.67, 25513.33, 29606.67, 30206.67, 21666.67, 34660,
15920, 18108.67, 6322, 2402.67, 19686.67, 28853.33, 2898,
3403.33, 2437.33, 4086, 25520, 22993.33, 2664, 4850, 3688,
3084.67, 22528.67, 4182, 24286.67, 4442.67, 29561.54, 29606.67,
28740, 34120, 16304.67, 12944.67, 25466.67, 25513.33, 26006.67,
30836.36, 35130, 34645.45, 15926.67, 16664, 24580, 15746,
15780.67, 37533.33, 63600, 21560, 12336, 15016.67, 8820.67, 9112, 29880, 35580, 31173.33, 21893.33, 5828, 8477.33, 8122.67,
13715.33, 7430, 14023.33, 13144.67, 6759.33, 5126.67, 7038.67,
13430.67, 13701.33, 8657.33, 14273.33, 21368, 18332, 16500,
16000, 14870.67, 14990.67, 13547.33, 14310, 14806.67, 13180,
39786.67, 58420, 56646.67, 59280, 60213.33, 60633.33, 61533.33,
64240, 46886.67, 55386.67, 9316, 43553.33, 5883.33, 5913.33,
39906.67, 13561.33, 29660, 11585.33, 25340, 8721.33, 57513.33,
58613.33, 5214, 60060, 9409.33, 36626.67, 22033.33, 7980.67,
7192, 5508, 57680, 9765.33, 39020, 35806.67, 56393.33, 50346.67,
23554, 54246.67, 63540, 62333.33, 14585, 54200, 55500, 18350,
18340, 54100, 58200, 12260, 17285, 15520, 6565, 5650, 34116.67,
4145, 27601.33, 3215, 2110, 2425, 4955, 5000, 2955, 3230,
9165, 4550, 3310, 6505, 4375, 4635, 4260, 3635, 4205, 3480,
10820, 12205, 16245, 13600, 17000, 13425.33, 11295, 11950,
4350, 5040, 6060, 16640, 10440, 24000, 29100, 30700, 3280,
3150, 2810, 2735, 17050, 20650, 9645, 10050, 4775, 4370,
5575, 5340, 3490, 6555, 5060, 5015, 2375, 2320, 4015, 3265,
7570, 6380, 28550, 26750, 4100, 3110, 14715, 15260, 4915,
4740, 27850, 17625, 3015, 3760, 4460, 4720, 5115, 5655, 6030,
9560, 2015, 2070, 2015, 2135, 2320, 2050, 2895, 2855, 2085,
2355, 2160, 2000, 2600, 2955, 3050, 3020, 2010, 2030, 2990,
2890, 3785, 3880, 4610, 3890, 2165, 2835, 4625, 4650, 4045,
4190, 6715, 6340, 4640, 5425, 8295, 16705, 28450, 17340,
11920, 16360, 4455, 4690, 4580, 4485, 11455, 10970, 13070,
11050, 3080, 3650, 3425, 3225, 9400, 9245, 9250, 7560, 4015,
3930, 14690, 15655, 24650, 25050, 10755, 9665, 4560, 2800,
6540, 15120, 23650, 24500, 11780, 11835, 14585, 54200, 55500,
18350, 18340, 54100, 58200, 12260, 17285, 15520, 6565, 5650,
38184, 35550, 19769.33, 10050, 14730, 43700, 7765, 53400,
3490, 6555, 9165, 4550, 3310, 6505, 4375, 4635, 4260, 3635,
4205, 3480, 10820, 12205, 16245, 13600, 16700, 16920, 11295,
11940, 6378.67, 8702, 12030.67, 12763.33, 11382.67, 10196.67,
15526.67, 25286.67, 6464.67, 6798.67, 7080.67, 7154, 7233.33,
7295.33, 8962, 8216.67, 5050, 5228, 5123.33, 5759.33, 4839.33,
5850, 10330.67, 9663.33, 6067.33, 5602.67, 11512, 11443.33,
8872, 6894.67, 15792, 17444, 6363.33, 6348, 10490, 10608.67,
10612, 10328.67, 20473.33, 21013.33, 12346.67, 11642, 11633.33,
10872.67, 11450, 14792.67, 15706.67, 16808.67, 5212, 6328.67,
7770.67, 7900.67, 6811.33, 8420.67, 9960, 11131.33, 4928.67,
5762, 3576.67, 5667.33, 4864, 8104, 8059.33, 10923.33, 8298.67,
7838.67, 7096.67, 7933.33, 8718, 8661.33, 10809.33, 13119.33,
11730, 11612.67, 8514.67, 10682, 11146.67, 11176, 16385.33,
15394.67, 5042, 5016, 4355.33, 10662.67, 8518.67, 9772, 9260.67,
14453.33, 2844, 3033.33, 3482.67, 3040.67, 8392, 8357.33,
6963.33, 7312.67, 2083.33, 2644.67, 3127.33, 3185.33, 5400,
6658.67, 6665.33, 7681.33, 3954.67, 3862.67, 5732, 6284.67,
6444.67, 6130.67, 9072.67, 10302.67, 4456, 4186.67, 9228.67,
8806.67, 7652.67, 7651.33, 11231.33, 11864.67, 10765.33,
10205.33, 13295.33, 181760, 25786.67, 28353.33, 28133.33,
32020, 6081.33, 6643.33, 5420.67, 6404, 9358.67, 9443.33,
14206.67, 5926.67, 5401.33, 5755.33, 3053.33, 3208.67, 3636.67,
8914, 5722, 2652, 8018, 7822, 8363.33, 6810, 14776, 8667.33,
29380, 12555, 10355.33, 8673.33, 13400.67, 13861.33, 18545.33,
5779.33, 28780, 31800, 10460.67, 14330.67, 16945.33, 14323.33,
12078.67, 17226.67, 19428.67, 25380, 9596.67, 10008, 10206.67,
9514.67, 8998.67, 9454, 12915.33, 13706.67, 5633.33, 6972.67,
6780, 9155.33, 9674, 13180.67, 10200, 9502, 10344.67, 10446,
14296.67, 14274.67, 12012.67, 11167.33, 24953.33, 24980,
10092, 9101.33, 12308.67, 13586, 11862, 12034, 22446.67,
25173.33)), row.names = c(NA, -640L), class = "data.frame")
Take a look at the function
reshape2::dcast
.– Marcus Nunes