0
The code below is an attempt to make a logistic regression with k fold cross validation. The idea is to take the confusion matrices generated in each fold and then generate an average confounding matrix, with 95% confidence (confidence interval for the average of 95%).
Is the code making sense? Any suggestions for improvement/correction?
import numpy as np
from sklearn import model_selection
from sklearn import datasets
from sklearn import svm
import pandas as pd
from sklearn.linear_model import LogisticRegression
from scipy.stats import sem, t
from scipy import mean
lista_matrizes = []
UNSW = pd.read_csv('/home/sec/Desktop/CEFET/UNSW_NB15_testing-set.csv')
previsores = UNSW.iloc[:,UNSW.columns.isin(('sload','dload',
'spkts','dpkts','swin','dwin','smean','dmean',
'sjit','djit','sinpkt','dinpkt','tcprtt','synack','ackdat','ct_srv_src','ct_srv_dst','ct_dst_ltm',
'ct_src_ltm','ct_src_dport_ltm','ct_dst_sport_ltm','ct_dst_src_ltm')) ].values
classe= UNSW.iloc[:, -1].values
#iris = datasets.load_iris()
#print(iris.data.shape, iris.target.shape)
X_train, X_test, y_train, y_test = model_selection.train_test_split(
previsores, classe, test_size=0.4, random_state=0)
print(X_train.shape, y_train.shape)
#((90, 4), (90,))
print(X_test.shape, y_test.shape)
#((60, 4), (60,))
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
print(previsores.shape)
#clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
print(logmodel.score(X_test, y_test) )
#Computing cross-validated metrics
logmodel = LogisticRegression()
scores = model_selection.cross_val_score(
logmodel, previsores, classe, cv=30)
print(scores)
#array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])
#print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
########K FOLD
print('########K FOLD########K FOLD########K FOLD########K FOLD')
from sklearn.model_selection import KFold
from sklearn.metrics import confusion_matrix
kf = KFold(n_splits=3, random_state=None, shuffle=False)
kf.get_n_splits(previsores)
for train_index, test_index in kf.split(previsores):
X_train, X_test = previsores[train_index], previsores[test_index]
y_train, y_test = classe[train_index], classe[test_index]
logmodel.fit(X_train, y_train)
print (confusion_matrix(y_test, logmodel.predict(X_test)))
lista_matrizes.append(confusion_matrix(y_test, logmodel.predict(X_test)))
#print(lista_matrizes)
final = np.mean(lista_matrizes, axis=0)
print(f" Mean confidence Matrix \n{final}")
# o intervalo de confiança
def mean_confidence_interval(data, confidence=0.95):
#data = [1, 2, 3, 4, 5]
n = len(data)
m = mean(data)
std_err = sem(data)
h = std_err * t.ppf((1 + confidence) / 2, n - 1)
start = m - h
#print (start)
end = m + h
#print (end)
return start, end
print()
print(f"Intervalo de confiança: \n{mean_confidence_interval(final)}")